Extra Informativo: Características estructurales y funcionales de las plaquetas






Autores:
Lic. Milagros García Mesa y Lic. Cristina Coma Alfonso
 Rev Cubana Angiol y Cir Vasc 2000;1(2):132-41


La importante participación de las plaquetas en el proceso de formación del trombo arterial determina el interés que despierta el conocimiento de sus características estructurales y funcionales, ya que esto constituye la base, entre otros aspectos, para el diseño de fármacos y estrategias de tratamiento antitrombótico. En este trabajo se reúne la información existente acerca de la estructura de la plaqueta, los componentes bioquímicos y su importancia para la función celular, los mecanismos de adhesión y activación plaquetaria, así como su interacción con ertrocitos, leucocitos y con el endotelio vascular, los cuales definen la participación de las plaquetas en los procesos de hemostasia y trombosis.

 Características estructurales de las plaquetas
Las plaquetas son fragmentos citoplasmáticos anucleados que se producen en la médula ósea. Circulan en la sangre en forma de disco biconvexo (discocitos) de aproximadamente 3 mm2 de diámetro, 4 - 7 mm3 de volumen y 10 pg de peso. Poseen carga eléctrica negativa en su superficie. Su concentración normal en la sangre es de 150 a 350 x 106/mL y su tiempo de vida media en sangre es de 7 a 10 días. Junto a los eritrocitos y leucocitos constituyen los elementos formes de la sangre. Poseen algunos elementos comunes a otras células y otros que las distinguen y caracterizan.  

Membrana externa
 Constituye una bicapa lipoproteica con glicoproteínas que funcionan como receptores de los agonistas fisiológicos de las plaquetas (ADP, TXA2, trombina), proteínas adhesivas (fibrinógeno, fibronectina, laminina, trombospondina, vitronectina, factor de von Willebrand [vWF]) y para ligandos fibrosos como el colágeno, además, posee enzimas importantes para el funcionamiento celular y fosfolípidos. Es responsable de la interacción de la célula con el medio circundante a través de receptores entre las que figuran las integrinas las cuales se caracterizan por enlazarse a proteínas que tienen la secuencia arginina-glicina-aspartato (RGD): fibrinógeno, fibronectina, vitronectina, factor de von Willebrand, colágeno.

 Citoplasma
Contiene partículas de glucógeno diseminadas o aglomeradas que constituyen la fuente energética de esta célula en forma similar a las células musculares. Contiene ribosomas en muy pocas cantidades, fundamentalmente en las células jóvenes, lo que concuerda con la casi nula actividad de síntesis proteica. Soporta, además, los microtúbulos que aparecen en forma de circunferencia, ubicados de manera concéntrica y que mantienen la forma discoide de la célula y garantizan su resistencia a la deformación. 

Citoesqueleto
Es un gel viscoelástico que contiene filamentos de actina entrecruzados. Tiene como funciones: a) la regulación de las propiedades de la membrana, tales como sus contornos y estabilidad, junto a los microtúbulos propicia el mantenimiento de la forma de la plaqueta en reposo, b) mediación de la distribución lateral de las glicoproteínas receptoras en la membrana, c) constituyen una barrera para la exocitosis. Su alteración puede llevar a la fragmentación del citoplasma formando micropartículas. 

Gel contractil 
Está formado por largos filamentos de actina enrejados, conectados con el citoesqueleto submembranoso y miosina que se encuentra en forma no polimérica en la célula en reposo. Constituye el cuerpo de los organelos celulares, los cuales se desplazan hacia el centro de la célula a consecuencia de la contracción del gel. 

Sistema tubular denso
Es un sistema de membranas que aparece en la vecindad de los microtúbulos y rodea los organelos, con apariencia, y funciones similares a las del retículo endoplásmico liso de otras células. Regula la activación plaquetaria mediante el secuestro o liberación de calcio, de forma similar a los túbulos del músculo esquelético y por un mecanismo más rápido que el de las mitocondrias. También posee ATPasas, enzimas del metabolismo del ácido araquidónico y adenilato ciclasa.


Las plaquetas poseen organelos inespecíficos, como mitocondrias, lisosomas y peroxisomas, que tienen características y funciones similares a los de otras células pero, además, portan organelos específicos, que son los gránulos alfa y los gránulos densos. 

Características funcionales de las plaquetas
Las plaquetas se caracterizan por un consumo muy extenso de oxígeno, es 6 veces más rápido que en las células musculares en reposo. La fuente de energía es la glucosa que se obtiene a partir del glucógeno y la vía fundamental es la glicolisis anaerobia. 

Activación plaquetaria 
La participación de las plaquetas en los procesos de hemostasia y trombosis depende de la ocurrencia de 3 eventos: el enlace plaqueta -superficie o adhesión plaquetaria; el cambio de forma y el enlace plaqueta- plaqueta o agregación plaquetaria. 

Adhesión plaquetaria
Las plaquetas son capaces de adherirse a superficies artificiales, sobre las cuales se expanden. Utilizan como ligando al fibrinógeno. También se adhieren al colágeno, fibronectina, laminina. Se forman enlaces firmes que dependen de la estructura fibrilar del colágeno y de la cantidad de subunidades RGD. La adhesión plaquetaria al colágeno requiere de la interacción del colágeno con vWF del plasma, GPIb, GPIaIIa de la membrana plaquetaria que durante la formación del coágulo establecen enlaces plaqueta-fibrina. Se produce la internalización de las mallas de fibrina o de colágeno, que son rodeados de microfilamentos. 

Cambio de forma
La primera manifestación física de la activación plaquetaria es el cambio de forma de discocito a esferocito, que se acompaña de un incremento en la superficie desde 8,02 mm2 (en la plaqueta en reposo) a 13,0 mm2 (en la plaqueta activada). Disminuye la longitud del subesqueleto submembrana cuya evaginación aporta membranas para este proceso. Se produce la redistribución de los microtúbulos, lo que le confiere la característica de deformabilidad celular y la posibilidad de emitir seudópodos. Los microtúbulos que están en estrecho contacto con el gel contractil, se trasladan hacia el centro de la célula. Se procede a la desintegración del citoesqueleto y se restituye a partir de la internalización de fragmentos de la membrana externa. Es un proceso independiente de calcio (cuando el estímulo es el ADP) y dependiente de energía. 

Agregación plaquetaria
 Estímulos fisiológicos para la activación plaquetaria son la trombina, el colágeno, el ADP, la epinefrina, el tromboxano A2 (TXA2). Los eventos posteriores tienen elementos comunes y otros que lo diferencian. Por ejemplo, ocurren como resultado de la estimulación de receptores específicos.  
Un evento que sigue a la activación es el incremento de la concentración de calcio citoplasmática, cuyo mecanismo bioquímico no ha sido determinado totalmente en la mayoría de los casos. 

Después de un estímulo fuerte los gránulos alfa y densos se alargan y emiten seudópodos, se aproximan a la membrana plasmática (lo que es posible debido a la disolución del sistema canalicular abierto), se funden con la membrana, aumentan de volumen debido a la entrada de agua y esto propicia la liberación de su contenido al medio exterior, lo que se denomina secreción.

La conocida susceptibilidad a la aspirina de la agregación inducida por colágeno, sugiere la importancia de la liberación de TXA2 en su mecanismo de activación plaquetaria. La epinefrina se considera un agonista débil que amplifica el efecto de otros estímulos a través del incremento de la concentración de calcio intracelular, y de la actividad adenilato ciclasa.

  Regulación fisiológica de la adhesión/agregación plaquetaria

Las plaquetas circulantes se encuentran en una interacción dinámica con los componentes del plasma, los demás elementos formes de la sangre y con el endotelio vascular a través de las glicoproteínas de las membranas plaquetarias y de diferentes mediadores químicos. Los eritrocitos, que viajan por la parte central de la corriente sanguínea, desplazan a las plaquetas hacia las cercanías de la pared del vaso, lo que puede dar lugar a enlaces reversibles. La adhesión plaquetaria sólo será efectiva cuando se produzcan enlaces irreversibles. La célula endotelial libera mediadores químicos que impiden que ocurra la adhesión plaquetaria a un endotelio sano.
El estímulo para la participación de las plaquetas en los procesos de hemostasis y trombosis es la lesión del endotelio vascular, considerado como tal el daño físico con exposición de la membrana basal rica en colágeno o la disfunción endotelial con desbalance de la producción de mediadores anti y proagregantes.
Cuando las plaquetas se adhieren al endotelio atraen más plaquetas. Se reclutan y activan a los leucocitos, los cuales se unen irreversiblemente a la superficie plaquetaria. La activación del receptor para el fibrinógeno soluble y la participación de los fosfolípidos de la membrana plaquetaria como cofactores para la cascada de reacciones enzimáticas de la coagulación favorece la formación del trombo arterial.
Por otra parte algunos componentes de los gránulos plaquetarios, que se liberan durante la activación, influyen sobre otras células, uno de ellos es el factor de crecimiento derivado de la plaqueta (PDGF), que estimula la proliferación celular y juega un papel importante en la cicatrización de heridas y al parecer también en el proceso de aterogénesis.

  Consideraciones finales

A partir del análisis global de la composición de las plaquetas y los elementos que rigen su funcionamiento queda claro que se trata de una célula compleja y sujeta a la influencia de una gran diversidad de factores. Es evidente la importancia de inhibir la activación plaquetaria para prevenir la trombosis arterial, así como el significado práctico que pudieran tener los estudios de función plaquetaria para el diagnóstico de estados pretrombóticos, lo cual es reforzado por el incremento de la reac-tividad plaquetaria que ocurre en las horas del día en que son más frecuentes el infarto del miocardio y la muerte súbita cardiaca.

No hay comentarios:

Publicar un comentario